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Abstract

This work aims to develop an algorithm for the au-
tomatic detection of Chagas disease using 12-lead ECG
within the George B. Moody PhysioNet Challenge 2025.
To that end, we adapted a residual network, initially
trained in a South American population to estimate the pa-
tient biological age using the ECG. To perform this adjust-
ment, we used Low-Rank Adaptation to update the weights
of the convolutional layers of the networks. To mitigate la-
beling uncertainties, we trained several models using dif-
ferent sub-datasets , which are part of the challenge public
training set. These models were then assembled to provide
a prediction on the presence of Chagas disease from the
ECG. Locally, the dataset was split into a 90/10 % train-
ing/internal held out sets stratified by demographics, cha-
gas labels and origin of the database to optimize the hy-
perparameters. Hyperparameters that provided the best
internal validation challenge score were used to train the
final model in the full training set. Our model achieved a
challenge metric score of 0.202 on the challenge test set
leading our team, ChagAI, to be ranked 23rd among 40
participants. The results highlight the difficulties of detect-
ing Chagas disease, even with a large training dataset. De-
spite a better than random level, the model requires further
optimization to improve its performance if it is intended to
be used in clinical practice.

1. Introduction

Chagas disease, caused by the protozoan parasite Try-
panosoma cruzi, is a neglected tropical disease endemic
to Latin America but increasingly recognized as a global
health concern [1]. While the acute phase of the dis-
ease may present with mild or non-specific symptoms, its
chronic form can persist silently for decades before mani-
festing as Chagas cardiomyopathy, a severe condition char-
acterized by conduction abnormalities, arrhythmias, heart
failure, and sudden cardiac death. Early identification

of individuals with Chagas disease is critical for manag-
ing progression and improving long-term outcomes[2–4].
Currently, diagnosis primarily bases on serological testing,
which, while sensitive, is often limited by cost, infrastruc-
ture, and access, particularly in resource-constrained set-
tings[5]. As Chagas cardiomyopathy affects the electri-
cal conduction system of the heart, the electrocardiogram
(ECG) offers a promising, widely accessible, and non-
invasive modality for detecting disease-related abnormal-
ities[6,7]. As a part of the PhysioNet Challenge 2025, this
work is dedicated to automatic detection of Chagas dis-
ease based on the ECG. Thereto, we leverage a residual
neural network originally trained to estimate ECG-derived
biological age and adapt it to the task of Chagas detection
using Low-Rank Adaptation (LoRA)[8,9]. This approach,
combined with regularization and ensembling strategies to
address label noise, aims to improve the model’s general-
ization and robustness, ultimately contributing to scalable
and accessible screening tools for Chagas disease.

2. Methods

2.1. Data preparation

A public dataset combining ECG recordings from 3
different cohorts was used for hyperparameter optimiza-
tion, training and local testing. The dataset contains
ECG recordings originating from 3 different cohorts. The
CODE15 dataset [8] is a dataset containing 343,424 ECG
recordings from the Telehealth network of Minas Gerais.
The labels regarding the existence of Chagas disease have
been self-reported by patients and are therefore not val-
idated. The Sami-Trop dataset is formed by a Brazilian
cohort of patients with chronic chagas disease confirmed
by serological tests [10]. From this cohort, 1,631 ECG
recordings are provided. The PTB-XL dataset is a Ger-
man dataset of 21,799 ECG recordings from patients with
various cardiac disorders but presumably without Chagas
disease [11]. As illustrated on Figure 1, a first split, strat-

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.108



Figure 1. Splitting of the public training dataset for both
training or testing our models locally, and assessing them
on the challenge servers and private datasets.

ified by Age, Sex, dataset of origin and Chagas label was
performed and 10 % of the data was kept apart as an inter-
nal held out subset. This set served to compare the differ-
ent approaches presented in this work. The 90% remain-
ing data were further split into a 80% training subset, and
a 20% validation subset for monitoring the models train-
ing and optimizing the different model hyperparameters.
For training the final model on the challenge server, the
whole public dataset was used with 80% of the recordings
serving to train the models while the 20% remaining data
served for monitoring the model’s loss and evaluation met-
rics during training.

Several preprocessing steps were applied to ensure uni-
form ECG inputs independently from the database they
were retrieved from. All the twelve leads were first band-
pass filtered via a 3rd order Butterworth filter between
0.1 Hz and 30 Hz. As the powerline frequencies differed
between several databases, 2nd order notch filters were
used to remove 50 Hz and 60 Hz frequencies. A resam-
pling of the recordings was then performed to 400 Hz.
Signals longer than 4096 sampled were cropped to the
4096 first samples, while those shorter were zero-padded
to 4096 samples on the right side. To account for differ-
ent acquisition settings between the sub-datasets, such as
analogue preprocessing, sampling frequency, and quanti-
zation, several preprocessings were applied to the ECG
recordings. A white noise was added set so that the sig-
nal to noise ratio was to 20 dB. To mitigate the difference
in recordings resolution, signals were rescaled to the range
[0, 1] and a white noise of standard deviation 1/1024 was
added. Signals were then centered to zero-mean after-

Figure 2. Graph representing the models created us-
ing different sub-datasets of the public training dataset.
The edges correspond to the models trained on these sub-
datasets while the vertices are obtained by averaging the
parameters of the models of the edges.

wards.
The different data sets that make up the public training

dataset differ in terms of the reliability of the labels and
the population that compose the cohorts. Several mod-
els were trained by restricting the training and validation
set to different subsets of origin sources. Therefore, be-
sides training a model using the whole local training and
validation dataset, we trained several additional models by
restricting these datasets to all the avaiblable pairs of sub-
domains, that is CODE15 with PTB-XL, CODE15 with
Sami-Trop, PTB-XL with Sami-Trop. As only CODE15
contains both positive and negative Chagas labels, another
model is also trained using only this cohort. As all these
subdatasets and their combinations were of different size,
the training set in each case was resampled with replace-
ment so that 40,000 ECGs served as training data with
among them 10% recordings having positive Chagas la-
bels. This results in set of five models fine-tuned to detect
Chagas disease from ECG recordings. Another set of 9
models was then built by averaging the parameters of all
pairs of those five models. This lead to 15 trained neu-
ral network as described on Figure2. The final prediction
made by our model consisted then in a soft voting of those
15 neural networks taking the average of the networks out-
put probabilities.

2.2. Model

The base neural network used to train our model was
the ResNet proposed by Lima et. al. [8], depicted on Fig-
ure 3. The model was originally used to predict biologi-
cal age from ECG recordings. We used the parameters of
this trained model as a starting point for our fine-tuning
approach, keeping them frozen during training. The pa-
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Figure 3. Left: Architecture of the pretrained neural net-
work as described by Lima et. al. Right: Implementation
of LoRA block added to each convolution layer of the orig-
inal architecture.

rameters of the last fully connected layer were, however,
randomly initialized via He uniform initializationand kept
free for fine-tuning.

To fine tune the model, we applied Low-Rank Adapta-
tion (LoRA). The approach uses low-rank decomposition
of matrices to constrain the weights of the original model
to be changed only in a low dimensional space [9]. More
formally, given a weight matrix W0 ∈ Rd×k, a new weight
matrix W ∈ Rd×k is built during the fine-tuning for the
new task by adding a residual branch :

W = W0 +
α

r
BA (1)

where B ∈ Rd×r, A ∈ Rr×k, and r << min(d, k). This
ensures that the matrix BA is low-rank. α is a rescaling
coefficient. To reduce the hyperparameters’ search space,
we set α = 2r as specified in [9].

We adapted the LoRA method to convolutional layers
as illustrated on Figure 3. To each convolution with d in-
put filters and k output filters, we added a residual block
consisting of a convolution of kernel-size 1, d input filters
and r output filters, followed by a second convolution of
kernel-size 1 of r input filters and k output filters. The out-
put of these convolutions was followed by a dropout and
rescaled by α

r = 2. An average pooling using the kernel
size, stride and padding size of the original convolution

Table 1. Total number of trainable parameters for each
model, and training parameters used for the model training
during comparison. (NA stands for Not Applicable)

Parameter LoRA Linear Full
Total trainable parameters 343,195 5,121 6,924,705

r 64 NA NA
Dropout 0.1 NA NA

α 0.5 0.75 0.25
γ 2 2 1.5
lr 1.10−3 5.10−4 1.10−3

Table 2. Challenge metric, AUROC, F1-score, PPV
reached by all trained models on the held out subset us-
ing the different fine-tuning strategies.

Local Validation CM AUROC F1-Score PPV
LoRA 0.263 0.73 0.12 0.07
Linear 0.260 0.71 0.11 0.06
Full 0.267 0.74 0.13 0.08

block was used so that the size of the output of the residual
block matches the output size of the original convolution.

2.3. Training

As Chagas disease has a low prevalence, the neural net-
work was trained to minimize the focal loss to address the
class imbalance of our dataset [12]. An Adam optimizer
with decoupled weight decay regularization was used to
adjust the neural networks weights [13]. For the different
fine-tuning schemes compared in this work, hyperparame-
ters were found via grid-search to maximize the challenge
metric on the internal validation subset.

The best hyperparameter combination found during the
local grid-search was then used to train the neural network
on the challenge server.

3. Results

We compared the LoRA approach to two other finetun-
ing schemes on the local held out set. A first one, denoted
Linear, was linear probe, consisting in training only the last
classification layer of the pretrained network described in
Figure 3 without using any LoRA block. The second ap-
proach, denoted Full, was a full training of neural network
initialized with the pretrained weights from [8], without
using any LoRA block. Table 1 indicates the number of
parameters trained by each finetuning scheme and sum-
marizes the best hyperparameter combinations retained to
compare the different finetuned models. It can be noticed
that LoRA trains only 10 percents of parameters compared
to the Full tuning approach. Table 2 summarizes the per-
formance of the different models on the local test set. We
report the metric used for the PhysioNet challenge 2025,
which consists in the Sensitivity of a model after assign-
ing a positive label to the top 5% of the samples for which
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Table 3. Challenge Metric of the LoRA model on the
external validation and test sets.

Validation Set Test Set Team Ranking
0.259 0.202 23

the model predicted the highest probability of Chagas dis-
ease while the remaining are assigned a negative label. We
also report the model’s positive predictive value (PPV) and
F1-score to summarize sensitivity and positive predictive
value. All the models obtained a negative predictive value
of 0.99 on the held out subset. As reported on Table 3,
the LoRA model with Majority voting obtained a score of
0.259 on the validation set of the challenge and 0.202 on
the challenge test set, leading our entry to be ranked 23rd
among 40 successful submissions.

4. Discussion

We used Low-Rank adaptation to finetune a residual net-
work that was originally trained for another task on a sim-
ilar population to the one of the training set. Compared to
the linear approach, LoRA allowed to tune also the lower
layers but required significantly less parameters than the
Full fine-tuning approach. The model from [8] was trained
on the Telehealth Network of Minas Guerais, from which
the CODE15% dataset is extracted. While the Full ap-
proach may lead to forget knowledge that could have been
encoded within the training of the original model, LoRA
can still keep this information as the weights are only up-
dated through the residual blocks introduced as on Figure
3. To address the differences in label certainty of the differ-
ent sub datasets forming the public train set, we proposed a
voting scheme combining several models that were trained
only on combinations of these different sub datasets. We
increased the number of participants to the voting by aver-
aging the parameters of model pairs [14].

While the models seem to perform better than random
classifiers according to the AUROCs, the binary classifica-
tion metrics remain low. Part of this highlights the diffi-
culty of training models to detect rare diseases even from
a big dataset. As the challenge metric was independent
of the binary model’s classification decision threshold, no
calibration was performed to adapt it. While the high neg-
ative predictive values of all the developed models would
rather suggest using such an automated approach to rule
out patients who would probably not have Chagas disease,
the clinical implementation of this tool will be limited re-
garding its low F1-score and positive predictive value.
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